硅谷在不久的未来也许就要更名了,美国科学家已证实,碲化铋可大大提高计算机芯片的运行速度和工作效率。使用现有半导体技术,此种材料即可允许电子在室温条件下无能耗地在其表面运动,这将给芯片的运行速度带来飞跃,甚至可能会成为以自旋电子学为基础的下一代全新计算机技术的基石。
此项发现是美国能源部斯坦福线性加速器中心(SLAC)的国家加速器实验室与斯坦福大学材料和能源科学研究所(SIMES)科学家共同努力的结果。在6月11日《科学》网络版上,美国物理学家陈榆林、沈志勋等发表了对碲化铋电子特性的测试报告。测试结果表明,该材料具有拓扑绝缘体的明显特征,可使电子在其表面自由流动,同时不损耗任何能量。
实验人员使用SLAC斯坦福同步辐射光源和劳伦斯伯克利国家实验室先进光源发出的X光对碲化铋样品进行了测试。他们在调查其电子特性时发现,其具有拓扑绝缘子的明显特征,而且碲化铋的实际特性还优于其理论特性。实验表明,碲化铋可耐受比理论预测更高的温度,这也意味着此种材料更接近于科学家想象中的应用。
这种神奇特性可能源于那些意外地行动不畅的电子。每个电子的量子自旋要和电子的运动相对应,这就是量子自旋霍尔效应,此一调整是创建自旋电子器件的重要组成部分。研究人员解释说,当你击打一个东西时,它通常会散开,还有可能反弹回来,但量子自旋霍尔效应意味着你不能按照完全相反的路径将其反射回去。由此造成的戏剧性效果就是电子毫无阻力的流动,将一个电压加至一拓扑绝缘体上,此一特殊自旋电流就会流动,且不会造成材料的发热和消散。
拓扑绝缘体不是常规的超导体,也不能用于超高效电源线,因为其只能携带很小的电流,但其为微芯片开发的范式转移铺平了道路,这将导致自旋电子学的新应用,即利用电子自旋来携带信息。而且,碲化铋在实际应用中非常易于生产和使用,这种三维材料可通过现有成熟的半导体技术进行制造,也还很容易进行掺杂,如此可相当容易地调谐其性能。