|
|
四足机器人“自学”成出色守门员 |
扑救球成功率近百分之九十 |
科技日报北京10月27日电 (记者张梦然)美国加州大学伯克利分校、西蒙弗雷泽大学和乔治亚理工学院的联合机器人团队最近创建了一种强化学习模型,能让四足机器人以守门员的身份高效踢足球。在arXiv上预先发表的一篇论文中介绍的该模型,通过反复试验不断提高了机器人的技能。
研究人员称,通过让四足机器人踢足球,可突破四足机器人的人工智能极限。守门员是一项有趣但具有挑战性的任务,它需要机器人对快速移动的球作出反应,有时需在空中飞行,并在很短的时间内(通常在一秒钟内)动态拦截它。
新研究的主要目标是创造一个四足机器人守门员,它可像人类守门员一样在比赛中完善其技能。为此,研究人员开发了一种强化学习模型,让该模型通过试错而不是固定的人工设计策略来训练机器人。
研究人员解释说,机器人首先学习不同的运动控制策略来执行不同的技能,例如躲避、前扑和跳跃,同时记录机器人脚趾的随机轨迹。基于这些控制策略,机器人接着学习高级规划策略,在检测到球的位置和自身状态后,选择最佳技能和动作来拦截球。
经过一系列模拟足球比赛,团队训练了强化学习模型。随后他们将它学到的策略部署在麻省理工学院开发的四足机器人Mini Cheetah上,并在现实世界中测试了它的性能。
研究表明,强化学习框架可极大地提高Mini Cheetah作为足球守门员的能力。在真实世界测试的40次随机射门中,机器人扑救成功率达87.5%。
研究人员称,此项工作最酷炫的是,四足机器人Mini Cheetah能执行跳跃和前扑等非常敏捷的运动技能,以及快速和精确的操作技能,例如在一瞬间摆动机器腿把球推开。这实际上突破了机器人领域“腿运动”的界限,表明腿也可以是一个机械手。
由于该模型可提高四足机器人的敏捷性和身体能力,因此这些机器人还可用于处理完全不同的任务,例如搜索和救援任务。也许不久的将来,四足机器人也可与人类足球运动员同场竞技。
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。