近日,中国科学技术大学物理系教授彭晨晖团队和香港科技大学教授张锐团队合作,利用液晶为研究体系,首先解析了具有不同拓扑结构的向错线和胶体颗粒形成胶体纠缠结构的机制,然后展示了拓扑结构的非平衡态相互转换可激发胶体纠缠结构的手性变化。该团队阐明了如何利用向错线的拓扑和几何特性实现胶体纠缠结构的集体手性转换的物理机制。这项工作为设计智能胶体复合材料开辟了新方向。研究成果日前通过直投的方式发表于《美国国家科学院院刊》。
2016年,关于拓扑相变和拓扑相的理论研究工作被授予诺贝尔物理奖。因此,将数学中拓扑的概念引入至凝聚态物理系统中产生了各种新奇的物理现象。其中,拓扑纠缠是理解固体系统中拓扑序的关键。而在软物质凝聚态系统,特别是液晶体系中,拓扑纠缠则以具有三维拓扑结构的向错线缠绕胶体颗粒的形式存在。驱动非平衡态拓扑纠缠并实现其可重构自组装一直是凝聚态物理领域内的巨大挑战。
研究团队在前期研究工作的基础上,通过在向列相液晶中引入两种不兼容的拓扑模式,制备了胶体纠缠结构。胶体纠缠的形成机制源于向错线拓扑结构与胶体拓扑结构的耦合。在没有外部刺激的情况下,非手性向列相液晶中可随机产生左手和右手两种不同手性的胶体纠缠结构。然而,向错线在光驱动至非平衡状态时,胶体纠缠结构的重构得以实现。具体来说,由于向错线中拓扑结构的转变,诱导胶体纠缠结构手性的可控转换。研究团队通过操纵位错线的拓扑模式和几何形状,还实现了胶体纠缠的合并和分裂等多种集体行为。手性转换表现为胶体自组装的集体旋转的“多米诺效应”。此外,通过控制向错线网络的时空演化,还实现了一种复杂的胶体纠缠双螺旋结构。此工作实验部分由彭晨晖团队完成,理论模拟部分由张锐团队完成。
研究人员介绍,通过深入理解拓扑纠缠的形成和重构机制,他们能够精确控制材料的微观结构,从而实现对其宏观性能的调控。拓扑学在软物质系统中的应用不仅为材料科学开辟了新的研究方向,而且为智能活性材料和自组装微型机器的设计和开发提供了新的思路。
相关论文信息:https://doi.org/10.1073/pnas.2402395121
版权声明:凡本网注明“来源:中国科学报、科学网、科学新闻杂志”的所有作品,网站转载,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、头条号等新媒体平台,转载请联系授权。邮箱:
[email protected]。