近日,美国南加州大学Cheng-Ming Chuong、中国台湾医科大学Wen-Tau Juan等研究人员合作揭示,飞行羽毛形成所需的生物结构学原理和适应性。2019年11月27日,国际知名学术期刊《细胞》发表了这一成果。
研究人员表示,数百万年以来,羽毛化恐龙和早期鸟类的飞行进化需要具有层次结构分支的飞行羽毛。在研究基于倒钩的羽毛形式时,对羽毛杆和叶片的研究仍不足。
研究人员采用了多学科的方法来研究其分子控制和生物结构组织。在横纹脊中,表皮祖细胞在Bmp的引导下转化皮层和髓质角质形成细胞,并转化生长因子β(TGF-β)信号,从而将编织物转化为可适应的双层复合束。
在倒钩中,表皮祖细胞产生圆柱状、板状或钩状的barbule细胞,形成不规则的细胞交界处和角蛋白表达介导的蓬松分支或羽毛状翼。转录组分析和功能研究表明,在真皮乳头中的前-后Wnt2b信号控制着时空共线性的barbule细胞命运。对具有不同飞行特性的鸟类的羽毛和缅甸琥珀中的羽毛进行定量生物物理分析,研究人员揭示了多维功能如何实现并可以启发未来的复合材料设计。
附:英文原文
Title: The Making of a Flight Feather: Bio-architectural Principles and Adaptation
Author: Wei-Ling Chang, Hao Wu, Yu-Kun Chiu, Shuo Wang, Ting-Xin Jiang, Zhong-Lai Luo, Yen-Cheng Lin, Ang Li, Jui-Ting Hsu, Heng-Li Huang, How-Jen Gu, Tse-Yu Lin, Shun-Min Yang, Tsung-Tse Lee, Yung-Chi Lai, Mingxing Lei, Ming-You Shie, Cheng-Te Yao, Yi-Wen Chen, J.C. Tsai, Shyh-Jou Shieh, Yeu-Kuang Hwu, Hsu-Chen Cheng, Pin-Chi Tang, Shih-Chieh Hung, Chih-Feng Chen, Michael Habib, Randall B. Widelitz, Ping Wu, Wen-Tau Juan, Cheng-Ming Chuong
Issue&Volume: 2019/11/27
Abstract: The evolution of flight in feathered dinosaurs and early birds over millions of years required flight feathers whose architecture features hierarchical branches. While barb-based feather forms were investigated, feather shafts and vanes are understudied. Here, we take a multi-disciplinary approach to study their molecular control and bio-architectural organizations. In rachidial ridges, epidermal progenitors generate cortex and medullary keratinocytes, guided by Bmp and transforming growth factor β (TGF-β) signaling that convert rachides into adaptable bilayer composite beams. In barb ridges, epidermal progenitors generate cylindrical, plate-, or hooklet-shaped barbule cells that form fluffy branches or pennaceous vanes, mediated by asymmetric cell junction and keratin expression. Transcriptome analyses and functional studies show anterior-posterior Wnt2b signaling within the dermal papilla controls barbule cell fates with spatiotemporal collinearity. Quantitative bio-physical analyses of feathers from birds with different flight characteristics and feathers in Burmese amber reveal how multi-dimensional functionality can be achieved and may inspire future composite material designs.
DOI: 10.1016/j.cell.2019.11.008
Source: https://www.cell.com/cell/fulltext/S0092-8674(19)31229-2