|
|
用eg电子占据作为催化活性描述符来指导纳米酶的理性设计 |
|
论文标题:eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics
期刊:Nature Communications
作者:Xiaoyu Wang, Xuejiao J. Gao, Li Qin, Changda Wang, Li Song, Yong-Ning Zhou, Guoyin Zhu, Wen Cao, Shichao Lin, Liqi Zhou, Kang Wang, Huigang Zhang, Zhong Jin, Peng Wang, Xingfa Gao, Hui Wei
发表时间:2019/02/11
数字识别码: 10.1038/s41467-019-08657-5
原文链接:http://t.cn/EIvy0rY
纳米酶是指具有类酶催化活性的功能纳米材料。与天然酶相比,纳米酶拥有众多优点,如价格低廉、稳定性高以及可大量制备等。得益于纳米技术、生物技术、催化科学以及计算科学的迅速发展,纳米酶已经取得了很多重要的突破(参见:Chemical Society Reviews, 2019, 48, 1004-1076)。过渡金属氧化物纳米材料是较早被发现具有过氧化物酶活性的材料也是目前研究最多的纳米酶。然而,长期以来研究者们并不清楚过渡金属氧化物模拟过氧化物酶的催化机理,对其构效关系更是所知甚少。这导致在设计金属氧化物纳米酶时往往是通过经验和试错的方法,不存在理性设计的理念。
为了获得指导纳米酶设计的描述符(理解化学反应快慢的标度),来自南京大学、江西师范大学、中国科学技术大学、复旦大学的研究者以钙钛矿氧化物纳米材料作为模型氧化物,系统研究了金属氧化物纳米材料的电子结构对其催化活性的影响。研究者发现钙钛矿氧化物中过渡金属离子的eg电子个数与其催化活性之间具有很明显的火山型关系,当eg电子个数在1左右时,其催化活性最高;eg电子个数为0或2时,其催化活性最低(图一)。因此,eg电子占据能够作为钙钛矿氧化物过氧化物酶活性的描述符来指导纳米酶的设计和筛选。而其它的参数,例如过渡金属离子的d电子个数,O 2p 带中心,以及B-O共价强度,与材料的过氧化物酶活性之间不存在明显的关联关系,不能够作为描述符来指导纳米酶的理性设计。
图1:考察 eg电子个数与钙钛矿氧化物的过氧化物酶活性之间的关系。
研究者运用理论计算进一步阐释了钙钛矿氧化物纳米酶的催化机理,并从理论上解释了eg电子占据能够作为过氧化物酶活性反应描述符的原因。如图二所示,钙钛矿氧化物主要通过四步来催化双氧水氧化TMB。通过进一步计算,发现当eg<1时,其速率决定步为IIIb或者IV,也就是吸附的OH或者O对底物TMB的氧化。当eg>1时,其速率决定步为II,也即双氧水的分解。eg电子占据主要通过改变材料对底物的吸附强弱以及反应的速率决定步骤来影响整个催化反应的快慢。当过渡金属氧化物的eg为1左右时,其具有优化的吸附能,能够有效促进速率决定步的反应。
图2:通过理论计算研究钙钛矿氧化物的过氧化物酶活性
该结论可以进一步推广到具有BO6配位的二元金属氧化物中。发现该描述符(eg电子占据)同样适用于二元金属氧化物。对于eg电子个数为0或2的二元金属氧化物,其过氧化物酶活性基本为零,而对于eg电子个数为1的二元金属氧化物,其具有高的催化活性。
通过eg电子占据这一描述符,优化出了具有最高活性的钙钛矿氧化物LaNiO3-δ。研究者将LaNiO3-δ的催化活性与之前文章报道的代表性纳米酶(如Fe3O4、Cu(OH)2、GO-COOH、CuO、Co3O4、CeO2等)进行了系统的比较,发现无论是质量活性还是比表面积归一化活性,LaNiO3-δ均比这些材料的过氧化物酶活性高出一到两个数量级。
该工作一方面获得了支配过渡金属氧化物过氧化物酶活性的描述符,从而为今后理性设计金属氧化物纳米酶提供了理论基础和指导;另一方面,也通过理论计算获得了金属氧化物纳米酶的催化机理,为今后纳米酶的进一步发展提供了理论支持。相关研究成果以“eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics”为题,于2019年2月11日发表在Nature Communications上。
南京大学魏辉教授课题组博士生王小宇和江西师范大学高兴发教授课题组的高雪皎博士为论文的共同第一作者。中国科学技术大学国家同步辐射实验室宋礼教授和博士生王昌达,复旦大学周永宁教授,魏辉课题组硕士生秦溧、曹雯以及博士生林世超,南京大学化学化工学院金钟教授和朱国银博士,王康教授,南京大学现代工学院王鹏教授和博士生周丽旗,张会刚教授等老师和同学亦为本工作提供重要的帮助与支持。
摘要:A peroxidase catalyzes the oxidation of a substrate with a peroxide. The search for peroxidase-like and other enzyme-like nanomaterials (called nanozymes) mainly relies on trial-and-error strategies, due to the lack of predictive descriptors. To fill this gap, here we investigate the occupancy of eg orbitals as a possible descriptor for the peroxidase-like activity of transition metal oxide (including perovskite oxide) nanozymes. Both experimental measurements and density functional theory calculations reveal a volcano relationship between the egoccupancy and nanozymes’ activity, with the highest peroxidase-like activities corresponding to eg occupancies of ~1.2. LaNiO3-δ, optimized based on the eg occupancy, exhibits an activity one to two orders of magnitude higher than that of other representative peroxidase-like nanozymes. This study shows that the eg occupancy is a predictive descriptor to guide the design of peroxidase-like nanozymes; in addition, it provides detailed insight into the catalytic mechanism of peroxidase-like nanozymes.
阅读论文全文请访问:http://t.cn/EIvy0rY
期刊介绍:Nature Communications (https://www.nature.com/ncomms/) is an open access journal that publishes high-quality research from all areas of the natural sciences. Papers published by the journal represent important advances of significance to specialists within each field.
The 2017 journal metrics for Nature Communications are as follows:
•2-year impact factor: 12.353
•5-year impact factor: 13.691
•Immediacy index: 1.829
•Eigenfactor® score: 0.92656
•Article Influence Score: 5.684
(来源:科学网)
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。