采用水溶液为电解质的超级电容器具有低成本和高安全性的优点,在轨道交通、备用电源等领域具有广阔应用前景。但是,水溶液在低温环境中容易凝固为冰,导致离子电导率骤降,使得超级电容器在低温下不能工作。解决这一问题的传统策略是通过添加防冻剂或使用高浓度电解质来防止水溶液电解质凝固。然而,这两种策略都会带来一些负面影响,如降低离子电导率和安全性、污染环境以及增加成本。
Zn(ClO4)2盐冰的低温拉曼面扫(a)、离子传输机制示意图(b)及锌离子混合电容器的循环稳定性(c)。
以上工作得到了国家自然科学基金、大连国家洁净能源实验室合作基金和肇庆市科技局的支持。(来源:中国科学院兰州化学物理研究所)
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。