在一个固定头部、假想游泳、虚拟现实的实验中,研究人员将幼年斑马鱼暴露在各种非自愿的位移中。它们跟踪这些位移,并在许多秒后通过纠正性游泳(“位置平衡”)向其早期位置移动。全脑功能成像显示,延髓中的一个网络存储了位置记忆,并在下橄榄核中诱导出错误信号,从而驱动未来的纠正性游泳。用光遗传学方法操纵延髓整合器细胞诱发了位移记忆行为。去除这些细胞或下游的橄榄神经元,就会取消位移纠正。这些结果揭示了脊椎动物的多区域后脑回路,该回路整合了自我运动并存储自我位置来控制运动行为。
据介绍,为了跟踪和控制自我定位,动物通过空间整合它们的运动。在哺乳动物的海马形成中观察到了自我定位的表征,但在更古老的大脑区域中是否存在位置表征,它们是如何从整合的自我运动中产生的,以及它们通过什么途径来控制运动,目前还不得而知。
附:英文原文
Title: A brainstem integrator for self-location memory and positional homeostasis in zebrafish
Author: En Yang, Maarten F. Zwart, Ben James, Mikail Rubinov, Ziqiang Wei, Sujatha Narayan, Nikita Vladimirov, Brett D. Mensh, James E. Fitzgerald, Misha B. Ahrens
Issue&Volume: 2022/12/22
Abstract: To track and control self-location, animals integrate their movements through space. Representations of self-location are observed in the mammalian hippocampal formation, but it is unknown if positional representations exist in more ancient brain regions, how they arise from integrated self-motion, and by what pathways they control locomotion. Here, in a head-fixed, fictive-swimming, virtual-reality preparation, we exposed larval zebrafish to a variety of involuntary displacements. They tracked these displacements and, many seconds later, moved toward their earlier location through corrective swimming (“positional homeostasis”). Whole-brain functional imaging revealed a network in the medulla that stores a memory of location and induces an error signal in the inferior olive to drive future corrective swimming. Optogenetically manipulating medullary integrator cells evoked displacement-memory behavior. Ablating them, or downstream olivary neurons, abolished displacement corrections. These results reveal a multiregional hindbrain circuit in vertebrates that integrates self-motion and stores self-location to control locomotor behavior.
DOI: 10.1016/j.cell.2022.11.022
Source: https://www.cell.com/cell/fulltext/S0092-8674(22)01466-0