|
|
N6配位的M2 (M=Fe,Co) 的合成、结构和磁性:Co2中的场致慢磁弛豫 | MDPI Magnetochemistry |
|
论文标题:Syntheses, Structures and Magnetic Properties of M2 (M = Fe, Co) Complexes with N6 Coordination Environment: Field-Induced Slow Magnetic Relaxation in Co2
期刊:Magnetochemistry
作者:Qianqian Yang, Xiao-Lei Li and Jinkui Tang
发表日期:23 November 2021
微信链接:https://mp.weixin.qq.com/s?__biz=Mzg5MzU5MDkwMg==&mid=2247506042&idx=
1&sn=621af911982ff552b4594f6e87839e13&chksm=c02e1463f7599d7546f99349aeb9ff6d3f39
faedbcb8695ff54cfa819e0e9f311e871cc52e3f&token=222904568&lang=zh_CN#rd
期刊链接:https://www.mdpi.com/journal/magnetochemistry
在N6配位环境中,研究者利用对称腙配体和金属离子合成了两个双核配合物[M2(H2L)2](ClO4)4•2MeCN (M=Co代表Co2,Fe代表Fe2),并通过单晶X射线衍射和磁化率测量确定了晶体结构和磁性。晶体结构研究表明,自旋中心都处于高自旋状态,八面体 (Oh) 几何形状扭曲;动态磁性能测量表明,复合Co2具有两步弛豫的场诱导单分子磁体性质,其中快速弛豫路径来自QTM,慢弛豫路径来自外加场下的热弛豫。
研究介绍
自从第一个单分子磁铁 (SMM) Mn12簇[1]被发现以来,由于SMMs在高密度信息存储、量子计算和自旋电子学等领域的潜在应用前景[2-12],SMMs的研究引起了科学家的兴趣。随后,大量基于过渡金属[13-17]、镧系元素[18-25]和混合金属离子[26-31]的SMM被设计和报道。对于SMM,大的负零场分裂参数 (D < 0) 或强单轴磁各向异性 (gz) 和大自旋基态 (S) 的组合可能导致SMM具有大的有效能垒 (Ueff)[32]。对于过渡金属配合物,晶体场分裂比自旋轨道耦合效能强,因此轨道角动量几乎完全淬灭[34]。然而,二价钴离子处于d7构型,对磁化有重要的轨道贡献,尤其是在存在量子隧道磁化 (QTM) 的情况下,因此CoII离子是构建SMM的良好候选者。
研究内容
Co2和Fe2的结构
Co2和Fe2的晶体结构分别通过173和180K的单晶X射线衍射确定。该复合物的不对称单元由一个中性配体H2L、一个晶体学独立的CoII中心、两个ClO4−阴离子和晶格中的一个MeCN溶剂分子组成。自旋中心位于两个H2L配体的N6配位中,形成了Co2核心 (图1)。
图1. 复杂Co2的晶体结构。颜色代码:橙红色,CoII;蓝色,N。
Co2和Fe2的静磁特性
直流磁化率是在1000Oe的电场中,在两种配合物的多晶样品上测量的,温度范围为2–300K (图2)。在室温下,Co2和Fe2的χMT值 (χM是摩尔磁化率) 分别为4.99和7.23cm3Kmol-1。在低温区域,Co2的χMT值逐渐下降,Fe2的χMT值急剧下降,这可能是由于自旋中心的磁相互作用或零场分裂造成的。
图2. 1000Oe电场下2-300K之间配合物Co2 (a) 和Fe2 (b) 的χMT与T关系图。
在1.9、3.0和5.0 K,0 - 7 T的磁场范围下,对Co2进行了场相关磁化。磁化值在7T时未达到饱和值 (6.96μB)。M与H/T的关系图在不同温度下是不可叠加的,表明存在磁各向异性(图3)。
图3. Co2在1.9、3.0和5.0K时的场相关摩尔磁化测量值。
Co2的动态磁特性
根据1.9-8.0K温度范围内的频率相关交流磁化率数据 (图4),Cole-Cole图显示出两个半圆形轮廓 (图5),表明存在两步松弛,速弛豫 (FR) 路径显示出典型的热弛豫,而慢速弛豫 (SR) 路径几乎与温度无关,这是由QTM引起的 (图6)。
图4. (a) Co2在3500Oe dc场下的温度和 (b) 频率相关交流磁化率。
图5. Co2在1.9-8.0K温度范围内,3500Oe dc场下的Co2-Cole图中红线代表最佳拟合。
图6. 在3500Oe dc场下获得的Co2τ与T-1的关系图。
拟合获得的FR路径有效势垒 (大约43K) 远低于能级2|D| = 60cm-1。因此,研究者忽略了奥尔巴赫弛豫过程,拟合了FR路径 (图7)。
图7. 在3500Oe dc场下获得的Co2τ与T–1的关系图。
研究结论
研究者在N6配位环境中使用对称腙配体与金属离子成功设计并合成了两种双核配合物Co2和Fe2。两种配合物的晶体结构表明,自旋中心处于N6配位环境中,八面体 (Oh) 几何形状扭曲;晶体结构分析和直流磁化率测量表明自旋中心处于高自旋状态;动态磁特性测量表明,由于CoII离子的磁各向异性,复合Co2表现出场诱导的单分子磁体特性。该复合物表现出两步弛豫,FR和SR路径分别由QTM和热弛豫产生。这项工作为基于八面体配位几何的双核3d-SMM的设计提供了新的机会。
英文原文来自Magnetochemistry期刊
Yang, Q.; Li, X.-L.; Tang, J. Syntheses, Structures and Magnetic Properties of M2 (M = Fe, Co) Complexes with N6 Coordination Environment: Field-Induced Slow Magnetic Relaxation in Co2. Magnetochemistry 2021, 7, 153.
参考文献
1. Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M.A. Magnetic bistability in a metal-ion cluster. Nat. 1993, 365, 141–143.
2. Gatteschi, D. Molecular Magnetism: A Basis for New Materials. Adv. Mater. 1994, 6, 635–645.
3. Bogani, L.; Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nat. Mater. 2008, 7, 179–186.
4. Dei, A.; Gatteschi, D. Molecular (Nano) Magnets as Test Grounds of Quantum Mechanics. Angew. Chem. Int. Ed. 2011, 50, 11852–11858.
5. Woodruff, D.N.; Winpenny, R.E.P.; Layfield, R.A. Lanthanide Single-Molecule Magnets. Chem. Rev. 2013, 113, 5110–5148.
6. Zhang, P.; Guo, Y.-N.; Tang, J. Recent advances in dysprosium-based single molecule magnets: Structural overview and synthetic strategies. Coord. Chem. Rev. 2013, 257, 1728–1763.
7. Moreno-Pineda, E.; Godfrin, C.; Balestro, F.; Wernsdorfer, W.; Ruben, M. Molecular spin qudits for quantum algorithms. Chem. Soc. Rev. 2018, 47, 501–513.
8. Zhu, Z.; Guo, M.; Li, X.-L.; Tang, J. Molecular magnetism of lanthanide: Advances and perspectives. Coord. Chem. Rev. 2019, 378, 350–364.
9. Mannini, M.; Pineider, F.; Sainctavit, P.; Danieli, C.; Otero, E.; Sciancalepore, C.; Talarico, A.M.; Arrio, M.A.; Cornia, A.; Gatteschi, D.; et al. Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nat. Mater. 2009, 8, 194–197.
10. Atzori, M.; Sessoli, R. The Second Quantum Revolution: Role and Challenges of Molecular Chemistry. J. Am. Chem. Soc. 2019, 141, 11339–11352.
11. Fittipaldi, M.; Cini, A.; Annino, G.; Vindigni, A.; Caneschi, A.; Sessoli, R. Electric field modulation of magnetic exchange in molecular helices. Nat. Mater. 2019, 18, 329–334.
12. Serrano, G.; Poggini, L.; Briganti, M.; Sorrentino, A.L.; Cucinotta, G.; Malavolti, L.; Cortigiani, B.; Otero, E.; Sainctavit, P.; Loth, S.; et al. Quantum dynamics of a single molecule magnet on superconducting Pb(111). Nat. Mater. 2020, 19, 546–551.
13. Gatteschi, D.; Caneschi, A.; Pardi, L.; Sessoli, R. Large Clusters of Metal Ions: The Transition from Molecular to Bulk Magnets. Science. 1994, 265, 1054–1058.
14. Barra, A.-L.; Debrunner, P.; Gatteschi, D.; Schulz, C.E.; Sessoli, R. Superparamagnetic-like behavior in an octanuclear iron cluster. Europhys. Lett. 1996, 35, 133–138.
15. Castro, S.L.; Sun, Z.; Grant, C.M.; Bollinger, J.C.; Hendrickson, D.N.; Christou, G. Single-Molecule Magnets: Tetranuclear Vanadium(III) Complexes with a Butterfly Structure and an S = 3 Ground State. J. Am. Chem. Soc. 1998, 120, 2365–2375.
16. Caneschi, A.; Gatteschi, D.; Lalioti, N.; Sangregorio, C.; Sessoli, R.; Venturi, G.; Vindigni, A.; Rettori, A.; Pini, M.G.; Novak, M.A. Cobalt(II)-Nitronyl Nitroxide Chains as Molecular Magnetic Nanowires. Angew. Chem. Int. Ed. 2001, 40, 1760–1763.
17. Chakarawet, K.; Harris, T.D.; Long, J.R. Semiquinone radical-bridged M2 (M = Fe, Co, Ni) complexes with strong magnetic exchange giving rise to slow magnetic relaxation. Chem. Sci. 2020, 11, 8196–8203.
18. Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.-y.; Kaizu, Y. Lanthanide Double-Decker Complexes Functioning as Magnets at the Single-Molecular Level. J. Am. Chem. Soc. 2003 125, 8694-8695.
19. Tang, J.; Hewitt, I.; Madhu, N.T.; Chastanet, G.; Wernsdorfer, W.; Anson, C.E.; Benelli, C.; Sessoli, R.; Powell, A.K. Dysprosium Triangles Showing Single-Molecule Magnet Behavior of Thermally Excited Spin States. Angew. Chem. Int. Ed. 2006, 45, 1729–1733.
20. AlDamen, M.A.; Clemente-Juan, J.M.; Coronado, E.; Marti?-Gastaldo, C.; Gaita-Arin?o, A. Mononuclear Lanthanide Single-Molecule Magnets Based on Polyoxometalates. J. Am. Chem. Soc. 2008, 130, 8874–8875.
21. Rinehart, J.D.; Fang, M.; Evans, W.J.; Long, J.R. Strong exchange and magnetic blocking in N23- radical-bridged lanthanide complexes. Nat. Chem. 2011, 3, 538–542.
22. Guo, Y.-N.; Xu, G.-F.; Wernsdorfer, W.; Ungur, L.; Guo, Y.; Tang, J.; Zhang, H.-J.; Chibotaru, L.F.; Powell, A.K. Strong Axiality and Ising Exchange Interaction Suppress Zero-Field Tunneling of Magnetization of an Asymmetric Dy2 Single-Molecule Magnet. J. Am. Chem. Soc. 2011, 133, 11948–11951.
23. Wang, Y.-X.; Ma, Y.; Chai, Y.; Shi, W.; Sun, Y.; Cheng, P. Observation of Magnetodielectric Effect in a Dysprosium-Based Single-Molecule Magnet. J. Am. Chem. Soc. 2018, 140, 7795–7798.
24. Guo, F.-S.; Day, B.M.; Chen, Y.-C.; Tong, M.-L.; Mansikkamäki, A.; Layfield, R.A. Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science 2018, 362, 1400–1403.
25. Briganti, M.; Garcia, G.F.; Jung, J.; Sessoli, R.; Le Guennic, B.; Totti, F. Covalency and magnetic anisotropy in lanthanide single molecule magnets: the DyDOTA archetype. Chem Sci 2019, 10, 7233–7245.
26. Osa, S.; Kido, T.; Matsumoto, N.; Re, N.; Pochaba, A.; Mrozinski, J. A Tetranuclear 3d−4f Single Molecule Magnet: [CuIILTbIII(hfac)2]2. J. Am. Chem. Soc. 2004, 126, 420–421.
27. Zaleski, C.M.; Depperman, E.C.; Kampf, J.W.; Kirk, M.L.; Pecoraro, V.L.; Synthesis, Structure, and Magnetic Properties of a Large Lanthanide–Transition-Metal Single-Molecule Magnet. Angew. Chem. Int. Ed. 2004, 43, 3912–3914.
28. Mereacre, V.M.; Ako, A.M.; Clérac, R.; Wernsdorfer, W.; Filoti, G.; Bartolomé, J.; Anson, C.E.; Powell, A.K. A Bell-Shaped Mn11Gd2 Single-Molecule Magnet. J. Am. Chem. Soc. 2007, 129, 9248–9249.
29. Kong, X.-J.; Ren, Y.-P.; Chen, W.-X.; Long, L.-S.; Zheng, Z.; Huang, R.-B.; Zheng, L.-S. A Four-Shell, Nesting Doll-like 3d–4f Cluster Containing 108 Metal Ions. Angew. Chem. Int. Ed. 2008, 47, 2398–2401.
30. Pugh, T.; Chilton, N.F.; Layfield, R.A. A Low-Symmetry Dysprosium Metallocene Single-Molecule Magnet with a High Anisotropy Barrier. Angew. Chem. Int. Ed. 2016, 55, 11082–11085.
31. Wu, J.; Zhao, L.; Zhang, L.; Li, X.-L.; Guo, M.; Powell, A.K.; Tang, J. Macroscopic Hexagonal Tubes of 3 d–4 f Metallocycles. Angew. Chem. Int. Ed. 2016, 55, 15574–15578.
32. Gatteschi, D.; Sessoli, R. Quantum Tunneling of Magnetization and Related Phenomena in Molecular Materials. Angew. Chem. Int. Ed. 2003, 42, 268–297.
33. Gatteschi, D.; Sessoli, R.; Villain, J. Molecular Nanomagnets, Oxford University Press: New York, NY, USA, 2006.
34. Benelli, C.; Gatteschi, D. Magnetism of Lanthanides in Molecular Materials with Transition-Metal Ions and Organic Radicals. Chem. Rev. 2002, 102, 2369–2388.
Magnetochemistry期刊介绍
主编:
Carlos J. Gómez García, Universidad de Valencia, Spain
期刊主要覆盖磁性的所有领域,特别关注磁性材料的设计、合成、表征及其结构和性质关系的研究。
2020 Impact Factor:2.193
5-Year Impact Factor:2.313
Time to First Decision:12.3 Days
Time to Publication:38 Days
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。