研究人员开发了一种基于拓扑超分子网络的分子工程策略,该策略允许将多个分子构件的竞争效应解耦以满足复杂的要求。研究人员在生理环境中同时获得了高电导率和crack-onset strain,并直接获得了低至细胞尺度的光图案能力。研究人员进一步在柔软和可塑性强的章鱼上收集了稳定的肌电信号,并进行了精确到单细胞核的局部神经调控,从而通过精细的脑干控制器官的特定活动。
据介绍,基于柔软和导电有机材料的内在可拉伸生物电子器件已被认为是与人体无缝和生物兼容的理想界面。剩下的一个挑战是如何将高机械强度和良好的导电性结合起来,特别是在小特征尺寸下的图案。
附:英文原文
Title: Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics
Author: Yuanwen Jiang, Zhitao Zhang, Yi-Xuan Wang, Deling Li, Charles-Théophile Coen, Ernie Hwaun, Gan Chen, Hung-Chin Wu, Donglai Zhong, Simiao Niu, Weichen Wang, Aref Saberi, Jian-Cheng Lai, Yilei Wu, Yang Wang, Artem A. Trotsyuk, Kang Yong Loh, Chien-Chung Shih, Wenhui Xu, Kui Liang, Kailiang Zhang, Yihong Bai, Gurupranav Gurusankar, Wenping Hu, Wang Jia, Zhen Cheng, Reinhold H. Dauskardt, Geoffrey C. Gurtner, Jeffrey B.-H. Tok, Karl Deisseroth, Ivan Soltesz, Zhenan Bao
Issue&Volume: 2022-03-25
Abstract: Intrinsically stretchable bioelectronic devices based on soft and conducting organic materials have been regarded as the ideal interface for seamless and biocompatible integration with the human body. A remaining challenge is to combine high mechanical robustness with good electrical conduction, especially when patterned at small feature sizes. We develop a molecular engineering strategy based on a topological supramolecular network, which allows for the decoupling of competing effects from multiple molecular building blocks to meet complex requirements. We obtained simultaneously high conductivity and crack-onset strain in a physiological environment, with direct photopatternability down to the cellular scale. We further collected stable electromyography signals on soft and malleable octopus and performed localized neuromodulation down to single-nucleus precision for controlling organ-specific activities through the delicate brainstem.
DOI: abj7564
Source: https://www.science.org/doi/10.1126/science.abj7564