当前位置:科学网首页 > 小柯机器人 >详情
联想学习过程中的区块化树突可塑性
作者:小柯机器人 发布时间:2022/4/17 14:16:16

瑞士巴塞尔大学Andreas Lüthi研究团队近期取得重要工作进展。他们报道了联想学习过程中的区块化树突可塑性。相关论文2022年4月15日在线发表于《科学》杂志上。

尽管研究人员对体外的突触和树突可塑性有详细的了解,但对行为动物中活性树突的功能和可塑性特性知之甚少。使用脑深部双光子Ca2+成像,研究人员探究了杏仁核主要神经元的感觉反应如何在经典的恐惧条件反射(一种联想学习形式)中发展。 恐惧条件作用诱导了受区室特异性抑制调节的树突和胞体的差异可塑性。 他们的结果表明,学习诱导的可塑性可以在体细胞和树突之间解耦合,反映了不同的突触和微电路级机制,这些机制增加了杏仁核回路的计算能力。

据了解,依赖经验的行为变化是由大脑回路中的长期功能修改所介导的。突触输入的活动依赖性可塑性是一个主要的细胞基础过程。

附:英文原文

Title: Compartmentalized dendritic plasticity during associative learning

Author: Simon d’Aquin, Andras Szonyi, Mathias Mahn, Sabine Krabbe, Jan Gründemann, Andreas Lüthi

Issue&Volume: 2022-04-15

Abstract: Experience-dependent changes in behavior are mediated by long-term functional modifications in brain circuits. Activity-dependent plasticity of synaptic input is a major underlying cellular process. Although we have a detailed understanding of synaptic and dendritic plasticity in vitro, little is known about the functional and plastic properties of active dendrites in behaving animals. Using deep brain two-photon Ca2+ imaging, we investigated how sensory responses in amygdala principal neurons develop upon classical fear conditioning, a form of associative learning. Fear conditioning induced differential plasticity in dendrites and somas regulated by compartment-specific inhibition. Our results indicate that learning-induced plasticity can be uncoupled between soma and dendrites, reflecting distinct synaptic and microcircuit-level mechanisms that increase the computational capacity of amygdala circuits.

DOI: abf7052

Source: https://www.science.org/doi/10.1126/science.abf7052

 

期刊信息
Science:《科学》,创刊于1880年。隶属于美国科学促进会,最新IF:41.037