美国康奈尔大学Z. Jane Wang研究组取得一项新突破。他们揭示了蜻蜓扶正反射的恢复机制。该研究于2022年5月12日发表于国际学术期刊《科学》杂志。
研究人员试图揭示蜻蜓扶正反射的关键机制,并开发基于物理模型来理解飞行机动的控制策略。通过运动学分析、物理建模和3D飞行模拟,研究发现蜻蜓利用左右翼俯仰不对称将其身体滚动180度以在约200毫秒内从倒挂中恢复。利用视力障碍蜻蜓进行的实验进一步表明,这种滚动动作是由它们的单眼和复眼发起的。这些结果表明,蜻蜓的视觉系统到调节翼距的肌肉之间存在一条通路,这是扶正恢复的基础。该研究建立了利用模型推断昆虫内部行为的定量工具,适用于广泛类别的自然和机器人飞行系统。
据了解,昆虫已经进化出复杂的反应从而在半空中纠正自己的错误。该恢复机制涉及感官、肌肉、身体和翅膀之间的复杂相互作用,它们必须遵守飞行规律。
附:英文原文
Title: Recovery mechanisms in the dragonfly righting reflex
Author: Z. Jane Wang, James MelfiJr., Anthony Leonardo
Issue&Volume: 2022-05-13
Abstract: Insects have evolved sophisticated reflexes to right themselves in mid-air. Their recovery mechanisms involve complex interactions among the physical senses, muscles, body, and wings, and they must obey the laws of flight. We sought to understand the key mechanisms involved in dragonfly righting reflexes and to develop physics-based models for understanding the control strategies of flight maneuvers. Using kinematic analyses, physical modeling, and three-dimensional flight simulations, we found that a dragonfly uses left-right wing pitch asymmetry to roll its body 180 degrees to recover from falling upside down in ~200 milliseconds. Experiments of dragonflies with blocked vision further revealed that this rolling maneuver is initiated by their ocelli and compound eyes. These results suggest a pathway from the dragonfly’s visual system to the muscles regulating wing pitch that underly the recovery. The methods developed here offer quantitative tools for inferring insects’ internal actions from their acrobatics, and are applicable to a broad class of natural and robotic flying systems.
DOI: abg0946
Source: https://www.science.org/doi/10.1126/science.abg0946