美国普林斯顿大学
该课题组报道了一种未曾预见到的高产光催化反应模式,该模式利用Marcus倒转区行为——将激发态能量的增加和激发态寿命的增加耦合——将钴多吡啶配合物作为光催化剂。这些钴(III)配合物凭借其强大的氧化还原电位和足够长的激发态寿命,可以参与双分子反应,催化芳基酰胺与具有挑战性的位阻芳基硼酸之间的氧化C(sp2)-N偶联。
更广泛地说,这一结果表明,发色团可以通过设计来增加激发态寿命,同时增加激发态能量,为相对丰富的金属作为光氧化还原催化剂的用途提供了途径。
据了解,第二和第三行过渡金属配合物在光催化中得到了广泛的应用,而地球上储量丰富的第一行过渡金属由于其激发态的快速禁阻衰变而应用受到限制。
附:英文原文
Title: Exploiting the Marcus inverted region for first-row transition metal–based photoredox catalysis
Author: Amy Y. Chan, Atanu Ghosh, Jonathan T. Yarranton, Jack Twilton, Jian Jin, Daniela M. Arias-Rotondo, Holt A. Sakai, James K. McCusker, David W. C. MacMillan
Issue&Volume: 2023-10-13
Abstract: Second- and third-row transition metal complexes are widely employed in photocatalysis, whereas earth-abundant first-row transition metals have found only limited use because of the prohibitively fast decay of their excited states. We report an unforeseen reactivity mode for productive photocatalysis that uses cobalt polypyridyl complexes as photocatalysts by exploiting Marcus inverted region behavior that couples increases in excited-state energies with increased excited-state lifetimes. These cobalt (III) complexes can engage in bimolecular reactivity by virtue of their strong redox potentials and sufficiently long excited-state lifetimes, catalyzing oxidative C(sp2)–N coupling of aryl amides with challenging sterically hindered aryl boronic acids. More generally, the results imply that chromophores can be designed to increase excited-state lifetimes while simultaneously increasing excited-state energies, providing a pathway for the use of relatively abundant metals as photoredox catalysts.
DOI: adj0612
Source: https://www.science.org/doi/10.1126/science.adj0612
Science:《科学》,创刊于1880年。隶属于美国科学促进会,最新IF:63.714
官方网址:https://www.sciencemag.org/
投稿链接:https://cts.sciencemag.org/scc/#/login