该研究团队提出了一种创新的三维高非线性超分辨率显微镜,它采用单光束激发并利用光子雪崩带来的超高非线性进行成像。通过建模和研究,研究人员发现这种显微镜的点扩展函数可以在不同模式之间灵活切换,并且在光子雪崩模式下,可以实现三维收缩到亚衍射尺度的效果。在实验中,研究人员展示了这种三维光学纳米显微镜在简单的激光扫描配置下所展现出的巨大光学非线性。
他们使用一束低功率、连续波、近红外激光,实现了横向分辨率低至58 nm (λ/14)和轴向分辨率低至185 nm (λ/5)的超高分辨率成像。此外,研究人员还将光子雪崩效应扩展到多种其他发射源,并开发了基于迁移光子雪崩机制的多色光子雪崩纳米探针。这一创新使得研究人员能够实现单束双色亚衍射超分辨率显微成像。
据悉,超分辨率荧光显微技术的发展对于深入理解纳米尺度的物理和生物基础至关重要。然而,目前大多数超分辨率模式存在一些限制,要么需要复杂且昂贵的专用系统,如多波束架构,要么需要经过复杂的带有固有伪影的后处理程序。因此,寻找一种简单的方法来实现三维(3D)或多通道亚衍射显微成像仍然是一个具有挑战性的任务。
附:英文原文
Title: Three-dimensional, dual-color nanoscopy enabled by migrating photon avalanches with one single low-power CW beam
Author: Zhimin Zhu1, Yusen Liang, Qi Zhao, Hui Wu, Binxiong Pan, Shuqian Qiao, Baoju Wang, Qiuqiang Zhan
Issue&Volume: 2023/12/23
Abstract: The development of super-resolution fluorescence microscopy is very essential for understanding the physical and biological fundamentals at nanometer scale. However, to date most super-resolution modalities require either complicated/costly purpose-built systems such as multiple-beam architectures or complex post-processing procedures with intrinsic artifacts. Achieving three-dimensional (3D) or multi-channel sub-diffraction microscopic imaging using a simple method remains a challenging and struggling task. Herein, we proposed 3D highly-nonlinear super-resolution microscopy using a single-beam excitation strategy, and the microscopy principle was modelled and studied based on the ultrahigh nonlinearity enabled by photon avalanches. According to the simulation, the point spread function of highly nonlinear microscopy is switchable among different modes and can shrink three-dimensionally to sub-diffraction scale at the photon avalanche mode. Experimentally, we demonstrated 3D optical nanoscopy assisted with huge optical nonlinearities in a simple laser scanning configuration, achieving a lateral resolution down to 58 nm (λ/14) and an axial resolution down to 185 nm (λ/5) with one single beam of low-power, continuous-wave, near-infrared laser. We further extended the photon avalanche effect to many other emitters to develop multi-color photon avalanching nanoprobes based on migrating photon avalanche mechanism, which enables us to implement single-beam dual-color sub-diffraction super-resolution microscopic imaging.
DOI: 10.1016/j.scib.2023.12.042
Source: https://www.sciencedirect.com/science/article/abs/pii/S2095927323009143
Science Bulletin:《科学通报》,创刊于1950年。隶属于SciEngine出版平台,最新IF:18.9
官方网址:https://www.sciengine.com/SB/home
投稿链接:https://mc03.manuscriptcentral.com/csb