山东大学张进涛团队报道了锌-碘电池中碘氧化还原转化的界面电催化研究。相关研究成果发表在2024年11月28日出版的《科学通报》。
碘的非导电性带来的挑战,加上在水中易形成可溶性多碘化物,阻碍了其与锌的结合,以开发先进的可充电电池。
该文中,研究人员演示了将碳化钼纳米簇(MoC)和锌单原子(Zn-SA)原位加载到多孔碳纤维中,以在界面上引发碘的电催化转化。MoC和Zn-SA之间的电子相互作用导致Mo的d带中心相对于费米能级升高,从而促进了与碘物种的界面相互作用以抑制穿梭效应。
值得注意的是,钼和碘之间的d-p轨道杂化诱导的最佳电荷离域也降低了氧化还原能垒,促进了界面转化。由于界面电催化通过有利的氧化还原转化途径,最大限度地减少了聚碘化物中间体,锌碘电池因此显示出230.6 mAh g-1的大比容量,和20000次循环的良好容量保持率。
附:英文原文
Title: Exploring interfacial electrocatalysis for iodine redox conversion in zinc-iodine battery
Author: Jintao Zhang
Issue&Volume: 2024/11/28
Abstract: The challenges posed by the non-conductive nature of iodine, coupled with the easy formation of soluble polyiodides in water, impede its integration with zinc for the development of advanced rechargeable batteries. Here we demonstrate the in-situ loading of molybdenum carbide nanoclusters (MoC) and zinc single atoms (Zn-SA) into porous carbon fibers to invoke electrocatalytic conversion of iodine at the interface. The electronic interactions between MoC and Zn-SA lead to an upshift in the d-band center of Mo relative to the Fermi level, thus promoting the interfacial interactions with iodine species to suppress shuttle effects. Notably, the optimal charge delocalization, induced by d-p orbital hybridization between molybdenum and iodine, also lowers the redox energy barrier to promote the interfacial conversion. With interfacial electrocatalysis minimizing polyiodide intermediates via a favorable redox conversion pathway, zinc-iodine batteries therefore demonstrate a large specific capacity of 230.6 mAh g1 and the good capacity retention for 20,000 cycles.
DOI: 10.1016/j.scib.2024.11.042
Source: https://www.sciencedirect.com/science/article/abs/pii/S2095927324008740
Science Bulletin:《科学通报》,创刊于1950年。隶属于SciEngine出版平台,最新IF:18.9
官方网址:https://www.sciengine.com/SB/home
投稿链接:https://mc03.manuscriptcentral.com/csb