近日,美国宾夕法尼亚州立大学的Mark Alaverdian与美国普林斯顿高等研究院的Aidan Herderschee合作,推导出维滕图的差分方程和积分族。相关研究成果已于2024年12月10日在国际知名学术期刊《高能物理杂志》上发表。
该研究团队表明,反德西特空间中的树级和单圈梅林空间相关函数,遵循特定的差分方程,这些方程是平坦空间中费曼圈积分微分方程的直接类比。
研究人员推导出了有限差分关系,称之为“分部求和关系”,它与费曼圈积分的分部积分关系相类似,用于将积分化简至一个基。
研究人员通过明确推导出各种树级,和单圈维滕图(直至四点泡泡图)的差分方程和分部求和关系,来阐述这一通用方法。
附:英文原文
Title: Difference equations and integral families for Witten diagrams
Author: Alaverdian, Mark, Herderschee, Aidan, Roiban, Radu, Teng, Fei
Issue&Volume: 2024-12-10
Abstract: We show that tree-level and one-loop Mellin space correlators in anti-de Sitter space obey certain difference equations, which are the direct analog to the differential equations for Feynman loop integrals in the flat space. Finite-difference relations, which we refer to as “summation-by-parts relations”, in parallel with the integration-by-parts relations for Feynman loop integrals, are derived to reduce the integrals to a basis. We illustrate the general methodology by explicitly deriving the difference equations and summation-by-parts relations for various tree-level and one-loop Witten diagrams up to the four-point bubble level.
DOI: 10.1007/JHEP12(2024)070
Source: https://link.springer.com/article/10.1007/JHEP12(2024)070