化学可改性的小分子空穴传输材料(HTMs)有望实现高效和可扩展的钙钛矿太阳能电池(PSCs)。与新兴的自组装单层相比,小分子HTMs在大面积沉积和长期操作稳定性方面更可靠。然而,目前倒置PSCs中的小分子HTMs缺乏平衡电荷传输能力,和界面兼容性的有效分子设计,导致功率转换效率(PCE)长期停滞在24.5%以下。
该文中,研究人员报告了HTM骨架和官能团的综合设计,该设计优化了一个简单的平面线性分子骨架,其迁移率超过7.1×10-4cm2 V-1S-1,并增强了其界面锚定能力。由于改进的表面性质和锚定效应,定制的HTMs增强了HTM/钙钛矿异质结处的界面接触,最大限度地减少了非辐射复合和输运损失,并实现了86.1%的高填充因子。
该工作克服了小分子HTMs,特别是大面积器件的持续效率瓶颈。因此,对于0.068 cm2的器件,所得PSCs的PCE为26.1%(25.7%经过认证),对于1.008 cm2的器件为24.7%(24.4%经过认证)。这代表了倒置PSCs中小分子HTMs的最高PCE。
附:英文原文
Title: Small-Molecule Hole Transport Materials for >26% Efficient Inverted Perovskite Solar Cells
Author: Jie Zeng, Zhixin Liu, Deng Wang, Jiawen Wu, Peide Zhu, Yuqi Bao, Xiaoyu Guo, Geping Qu, Bihua Hu, Xingzhu Wang, Yong Zhang, Lei Yan, Alex K.-Y. Jen, Baomin Xu
Issue&Volume: December 18, 2024
Abstract: Chemically modifiable small-molecule hole transport materials (HTMs) hold promise for achieving efficient and scalable perovskite solar cells (PSCs). Compared to emerging self-assembled monolayers, small-molecule HTMs are more reliable in terms of large-area deposition and long-term operational stability. However, current small-molecule HTMs in inverted PSCs lack efficient molecular designs that balance both the charge transport capability and interface compatibility, resulting in a long-standing stagnation of power conversion efficiency (PCE) below 24.5%. Here, we report the comprehensive design of HTMs’ backbone and functional groups, which optimizes a simple planar linear molecular backbone with a high mobility exceeding 7.1 × 10–4 cm2 V–1 S–1 and enhances its interface anchoring capability. Owing to the improved surface properties and anchoring effects, the tailored HTMs enhance the interface contact at the HTM/perovskite heterojunction, minimizing nonradiative recombination and transport loss and leading to a high fill factor of 86.1%. Our work has overcome the persistent efficiency bottleneck for small-molecule HTMs, particularly for large-area devices. Consequently, the resultant PSCs exhibit PCEs of 26.1% (25.7% certified) for a 0.068 cm2 device and 24.7% (24.4% certified) for a 1.008 cm2 device, representing the highest PCE for small-molecule HTMs in inverted PSCs.
DOI: 10.1021/jacs.4c13356
Source: https://pubs.acs.org/doi/abs/10.1021/jacs.4c13356
JACS:《美国化学会志》,创刊于1879年。隶属于美国化学会,最新IF:16.383
官方网址:https://pubs.acs.org/journal/jacsat
投稿链接:https://acsparagonplus.acs.org/psweb/loginForm?code=1000