当前位置:科学网首页 > 小柯机器人 >详情
在异质金属-有机笼内原位生长金属团簇以切换电子转移
作者:小柯机器人 发布时间:2024/12/27 16:45:15

东北师范大学孙春义研究团队报道了在异质金属-有机笼内原位生长金属团簇以切换电子转移,实现定向CO2光还原。相关研究成果发表在2024年12月25日出版的《德国应用化学》。

构建具有内部修饰的金属-有机笼(MOCs),是构建酶样腔和解开酶的高催化活性与选择性之谜的有前景的途径。然而,目前的研究主要集中在单个金属节点笼上,在基于金属簇的架构和金属簇的原位内源性生成方面,几乎没有取得什么进展。

该文中,基于软硬酸碱(HSAB),研究人员通过一锅法获得了由[Cu3OPz3]+和[V6O6(OCH39(SO4)(CO23]2-团簇构建的,基于金属簇的异金属MOC(Cu3VMOP)。此外,通过协调驱动的分层自组装策略在笼中原位生成Cu4I4,形成Cu4I4@Cu3VMOP。

作为二氧化碳还原的催化剂,Cu3VMOP产生HCOOH和CH3COOH作为主要还原产物,CH3COOH的收率高达0.9 mmol g–1,在报告的材料中排名最高,而Cu4I4@Cu3VMOP能够实现CO2到HCOOH的转化,甲酸选择性为100%,收率比Cu3VMOP高5倍。

理论计算和飞秒时间分辨瞬态吸收表明,内源性Cu4I4不仅可以调节轨道排列并增强局域电子态,以产生长寿命的电荷分离态,还可以提高*CO耦合能垒,从而将CO2定向转化为甲酸。

附:英文原文

Title: In-situ Growth of Metallocluster inside Heterometal–organic Cage to Switch Electron Transfer for Targeted CO2 Photoreduction

Author: Yang Yang, Man Dong, Qi Wu, Chao Qin, Weichao Chen, Yun Geng, Shuangxue Wu, Chunyi Sun, Kuizhan Shao, Zhongmin Su, Xinlong Wang

Issue&Volume: 2024-12-25

Abstract: Construction of metal–organic cages (MOCs) with internal modifications is a promising avenue to build enzyme-like cavities and unlocking the mystery of highly catalytic activity and selectivity of enzymes. However, current interests are mainly focused on single-metal-node cages, little achievement has been expended to metalloclusters-based architectures, and the in situ endogenous generation of metal clusters. Herein, based on the hard-soft-acids-bases (HSAB), the metalloclusters-based heterometallic MOC (Cu3VMOP) constructed of [Cu3OPz3]+ and [V6O6(OCH3)9(SO4)(CO2)3]2– clusters was obtained by one-pot method. In addition, Cu4I4 was generated in situ in the cage to form Cu4I4@Cu3VMOP by the coordination-driven hierarchical self-assembly strategy. As catalysts for CO2 reduction, Cu3VMOP produces HCOOH and CH3COOH as the main reduction product with yield of CH3COOH up to 0.9 mmol g–1, ranking among the highest value of reported materials, whereas Cu4I4@Cu3VMOP exhibited targeted CO2-to-HCOOH conversion with 100% formic acid selectivity and the yield outperforms that of Cu3VMOP by 5 fold. Theoretical calculations and femtosecond time-resolved transient absorption reveal that endogenous Cu4I4 not only regulates orbital arrangements and enhances localized electron states to generate a long-lived charge-separated state, but also raises *CO coupling energy barrier, resulting in the targeted conversion of CO2 to formic acid.

DOI: 10.1002/anie.202423018

Source: https://onlinelibrary.wiley.com/doi/10.1002/anie.202423018

期刊信息

Angewandte Chemie:《德国应用化学》,创刊于1887年。隶属于德国化学会,最新IF:16.823
官方网址:https://onlinelibrary.wiley.com/journal/15213773
投稿链接:https://www.editorialmanager.com/anie/default.aspx