二维(2D)高熵过渡金属二硫化物(HETMDs)因其结构特性和高端器件的相关可能性,而引起了人们的极大兴趣。然而,由于合成中不同金属元素的固有特性存在差异,如前体的饱和蒸气压和产物的形成能,2D HETMDs的受控合成面临着巨大的挑战。
该文中,研究人员介绍了通过液相反应系统,合成厚度为0.92nm的2D HETMD单晶,其中金属元素均匀、同时进料。不同前体的快速共沉积有助于形成高熵产物,从而防止相分离。
该方法可以扩展到生产各种2D HETMDs,如五元(MoNbTaV)S2、六羟基(MoWNbTaV)S1和多卤素化合物(MoWNb)SSe。所制备的2D HETMD是析氢反应(HER)的优秀催化剂,在10mA cm-2的单个晶体上显示出84mV的过电位,这比原始MoS2的过电位(在10mA cm-2下为260mV)要好得多。
该策略提供了在2D条件下下人工设计,HETMD单晶的元素选择性和性能的灵活性,使其能够在广泛的先进领域得到应用。
附:英文原文
Title: Synthesis of Two-Dimensional High-Entropy Transition Metal Dichalcogenide Single Crystals
Author: Zhouyang Wang, Xiaonan Chen, Yiran Ding, Xiaofei Zhu, Zihang Sun, Haitao Zhou, Xiang Li, Wenxuan Yang, Junlin Liu, Runze He, Jingrui Luo, Ting Yu, Mengqi Zeng, Lei Fu
Issue&Volume: December 26, 2024
Abstract: Two-dimensional (2D) high-entropy transition metal dichalcogenides (HETMDs) have gained significant interest due to their structural properties and correlated possibilities for high-end devices. However, the controlled synthesis of 2D HETMDs presents substantial challenges owing to the distinction in the inherent characteristics among diverse metal elements in the synthesis, such as saturated vapor pressure of precursors and formation energy of products. Here, we present the synthesis of a 2D HETMD single crystal with 0.92 nm thickness through a liquid-phase reaction system, where the metal elements are fed uniformly and simultaneously. The rapid codeposition of different precursors facilitates the formation of high-entropy products, thereby preventing phase separation. The method can be expanded to produce a variety of 2D HETMDs, such as quinary (MoNbTaV)S2, hexahydroxy (MoWNbTaV)S2, and multichalcogenide (MoWNb)SSe. The as-prepared 2D HETMD is an excellent catalyst for the hydrogen evolution reaction (HER), demonstrating the overpotential of 84 mV at 10 mA cm–2 of an individual crystal, which is much better than that of pristine MoS2 (260 mV at 10 mA cm–2). The strategy offers the flexibility to artificially design the element selectivity and properties of HETMD single crystals in the 2D limit, enabling applications across a wide range of advanced fields.
DOI: 10.1021/jacs.4c11363
Source: https://pubs.acs.org/doi/abs/10.1021/jacs.4c11363
JACS:《美国化学会志》,创刊于1879年。隶属于美国化学会,最新IF:16.383
官方网址:https://pubs.acs.org/journal/jacsat
投稿链接:https://acsparagonplus.acs.org/psweb/loginForm?code=1000