近日,
该研究团队利用角分辨光发射谱和密度泛函理论计算来探究其起源,特别聚焦于EuCd2P2。虽然低能谱权重如预期般随着电阻率异常在最大磁阻(TMR)温度附近的变化而变化,符合输运-光谱对应关系,但光谱却完全不相干且受到强烈抑制,没有朗道准粒子的迹象。
通过结合理论的系统性材料和温度依赖性研究,研究人员将这种非准粒子特征归因于强磁与晶格相互作用的共存,这是由p-f混合所赋予的特性。鉴于已知存在铁磁团簇,这自然指向了CMR的起源:自旋极化极化子在铁磁团簇边界的散射。这些结果不仅为探究EuCd2X2家族中的强关联和拓扑性质提供了启示,而且从更广泛的角度来看,也例证了多种协同相互作用如何在凝聚态系统中产生非凡行为。
据悉,最近的实验提出一种新范式,在EuM2X2(M = Cd、In、Zn;X = P、As)这一系列材料中实现新型庞磁电阻(CMR),这种新范式有别于传统的Kondo–Ruderman–Kittel–Kasuya–Yosida交叉、伴随结构扭曲的磁相变或拓扑相变等途径。
附:英文原文
Title: Colossal magnetoresistance from spin-polarized polarons in an Ising system
Author: Li, Ying-Fei, Been, Emily M., Balguri, Sudhaman, Jia, Chun-Jing, Mahendru, Mira B., Wang, Zhi-Cheng, Cui, Yi, Chen, Su-Di, Hashimoto, Makoto, Lu, Dong-Hui, Moritz, Brian, Zaanen, Jan, Tafti, Fazel, Devereaux, Thomas P., Shen, Zhi-Xun
Issue&Volume: 2024-12-2
Abstract: Recent experiments suggest a new paradigm toward novel colossal magnetoresistance (CMR) in a family of materials EuM2X2 (M = Cd, In, Zn; X = P, As), distinct from the traditional avenues involving Kondo–Ruderman–Kittel–Kasuya–Yosida crossovers, magnetic phase transitions with structural distortions, or topological phase transitions. Here, we use angle-resolved photoemission spectroscopy and density functional theory calculations to explore their origin, particularly focusing on EuCd2P2. While the low-energy spectral weight royally tracks that of the resistivity anomaly near the temperature with maximum magnetoresistance (TMR) as expected from transport-spectroscopy correspondence, the spectra are completely incoherent and strongly suppressed with no hint of a Landau quasiparticle. Using systematic material and temperature dependence investigation complemented by theory, we attribute this nonquasiparticle caricature to the strong presence of entangled magnetic and lattice interactions, a characteristic enabled by the p-f mixing. Given the known presence of ferromagnetic clusters, this naturally points to the origin of CMR being the scattering of spin-polarized polarons at the boundaries of ferromagnetic clusters. These results are not only illuminating to investigate the strong correlations and topology in EuCd2X2 family, but, in a broader view, exemplify how multiple cooperative interactions can give rise to extraordinary behaviors in condensed matter systems.
DOI: 10.1073/pnas.2409846121
Source: https://www.pnas.org/doi/abs/10.1073/pnas.2409846121