据悉,量子隐形传态在量子信息科学中既具有基础研究的价值,也具有重大的实际应用意义。迄今为止,量子隐形传态已在多种物理系统中实现,其中超导量子比特尤为重要,因为它们已成为实现大规模量子计算的前沿系统。然而,由于在单个芯片上增加超导量子比特数量面临一些新兴的技术难题,因此这一过程的难度日益增加。
在远距离的超导芯片上实现量子隐形传态和远程计算,是通过分布式量子计算网络扩展系统规模的关键量子通信技术。然而,由于各种技术挑战,包括在远距离超导芯片之间建立量子互连以及在有损互连上传输飞行微波光子的效率低下等,这一目标尚未在实验中实现。
该研究团队展示了通过一根64米长、在低温下具有0.32分贝/公里超低损耗的电缆总线连接的两个远距离超导芯片之间,实现量子态的确定性隐形传输和纠缠门操作。研究人员利用飞行的微波光子生成了高保真度的远程纠缠态。这项工作展示了超导量子比特分布式量子计算的一个关键构建模块,并为微波频率下的波导量子电动力学和量子光子学开辟了一条新途径。
附:英文原文
Title: Deterministic quantum state and gate teleportation between distant superconducting chips
Author: J. Qiu, Y. Liu, L. Hu, Y. Wu, J. Niu, L. Zhang, W. Huang, Y. Chen, J. Li, S. Liu, Y.
Zhong, L. Duan, D. Yu
Issue&Volume: 2024/12/03
Abstract: Quantum teleportation is of both fundamental interest and great practical importance in quantum information science. To date, quantum teleportation has been implemented in various physical systems, among which superconducting qubits are of particular practical significance as they emerge as a leading system to realize large-scale quantum computation. Nevertheless, scaling up the number of superconducting qubits on a single chip becomes increasing challenging because of some emergent technical difficulties. Realization of quantum teleportation and remote computation over qubits on distant superconducting chips is a key quantum communication technology to scaling up the system through a distributed quantum computational network. However, this goal has not been realized yet in experiments due to the technical challenges including making a quantum interconnect between distant superconducting chips and the inefficient transfer of flying microwave photons over the lossy interconnects. Here we demonstrate deterministic teleportation of quantum states and entangling gates between distant superconducting chips connected by a 64-meter-long cable bus featuring an ultralow loss of 0.32 dB/km at cryogenic temperatures, where high fidelity remote entanglement is generated via flying microwave photons. Our work demonstrates a prime building block for distributed quantum computation with superconducting qubits, and opens up a new avenue for waveguide quantum electrodynamics and quantum photonics at microwave frequencies.
DOI: 10.1016/j.scib.2024.11.047
Source: https://www.sciencedirect.com/science/article/pii/S209592732400879X
Science Bulletin:《科学通报》,创刊于1950年。隶属于SciEngine出版平台,最新IF:18.9
官方网址:https://www.sciengine.com/SB/home
投稿链接:https://mc03.manuscriptcentral.com/csb