该研究团队采用非微扰的行列式量子蒙特卡洛方法,针对三波段哈伯德模型来解决这一问题。通过高效的实现方式,研究人员能够解析该模型中的自旋和电荷涨落调制,并绘制出它们随电荷转移能量和掺杂变化的演化图。
研究发现,电荷调制的非公度性与自旋调制是解耦的,并且随着空穴掺杂的增加而减小,这与高温下的实验测量结果相一致。这些发现支持了以下观点:高温下的电荷相关性不同于在低温下单波段哈伯德模型中观察到的相互交织的条纹序。
据悉,高温超导铜氧化物中存在单向自旋和电荷密度波序,它们能以非平凡的方式与超导性相互交织。虽然这些条纹的电荷组分,现在已在几乎所有的铜氧化物家族中被观察到,但它们随掺杂的细致演变在不同材料和高温、低温下各不相同。
附:英文原文
Title: Fluctuating charge-density-wave correlations in the three-band Hubbard model
Author: Mai, Peizhi, Cohen-Stead, Benjamin, Maier, Thomas A., Johnston, Steven
Issue&Volume: 2024-12-5
Abstract: The high-temperature superconducting cuprates host unidirectional spin- and charge-density-wave orders that can intertwine with superconductivity in nontrivial ways. While the charge components of these stripes have now been observed in nearly all cuprate families, their detailed evolution with doping varies across different materials and at high and low temperatures. We address this problem using nonperturbative determinant quantum Monte Carlo calculations for the three-band Hubbard model. Using an efficient implementation, we can resolve the model’s fluctuating spin and charge modulations and map their evolution as a function of the charge transfer energy and doping. We find that the incommensurability of the charge modulations is decoupled from the spin modulations and decreases with hole doping, consistent with experimental measurements at high temperatures. These findings support the proposal that the high-temperature charge correlations are distinct from the intertwined stripe order observed at low-temperature and in the single-band Hubbard model.
DOI: 10.1073/pnas.2408717121
Source: https://www.pnas.org/doi/abs/10.1073/pnas.2408717121