|
|
高电压固态锂电池新发现!聚合物电解质设计有了新方法 |
|
近日,中国科学院苏州纳米所研究员沈炎宾团队提出一种阴离子调制聚合物电解质(以下简称AMPE)设计概念,研制了兼顾高电压正极和锂负极界面稳定性、且室温电导率高的聚合物电解质,在高电压固态锂金属电池中获得了良好的循环稳定性。相关成果发表于Angewandte Chemie International Edition。
聚合物电解质具有良好的柔性,可与电极材料形成低阻抗界面,在固态电池中具有良好的应用前景。然而,聚合物电解质通常室温电导率较低,且电化学窗口较窄,不适用于高比能固态锂金属电池。因此,开发具有高离子电导率和良好界面相容性的聚合物电解质是固态电池领域的重要研究方向之一。团队基于单离子聚合物电解质的开发、界面传输机制的研究、固态电极传输网络的构建等前期研究,提出用以匹配高电压固态锂电池的聚合物电解质的设计方法。
具体来讲,该工作采用耐高电压且具有高电荷密度的离子液体单体为聚合物骨架,以确保聚合物链在正极侧的高电压耐受性和足够的载流子。为了解决聚离子液体电解质电荷密度集中且锂盐解离能力弱的问题,团队引入阴离子受体,利用其缺电子基团与离子液体单体上的阴离子相互作用,促进电解质中阴离子的均匀化分布,并提高电解质的锂离子迁移数,同时帮助解离锂盐阴阳离子对,促进自由锂离子的生成。
值得一提的是,理论计算和实验研究发现,阴离子受体中缺电子基团与锂盐阴离子TFSI?之间的相互作用降低了锂盐阴离子的LUMO(最低未占有分子轨道),使其更容易在锂金属负极上被还原,从而分解形成稳定的电解质界面层,提高锂金属负极的循环稳定性。通过以上设计,获得的AMPE具有较高的离子电导率,较高的锂离子迁移数以及较宽的电化学稳定窗口,还能够有效抑制锂枝晶的生长。
本研究利用阴离子受体调制耐高电压聚离子液体的电荷密度,设计出了一种高性能聚合物电解质。阴离子受体助力解离阴阳离子对促进游离锂离子的生成,且阴离子锚定效应将锂离子迁移数从0.13提高到0.41。同时缺电子基团与TFSI?之间的强相互作用促进了TFSI?的还原分解,在锂负极表面形成电化学稳定的SEI(固体电解质界面),提高了高电压锂金属电池的循环稳定性,该设计方法为研发用于高比能固态锂电池的聚合物电解质提供了新的思路。
相关论文链接:https://doi.org/10.1002/anie.202412280
?
阴离子调制聚合物电解质的设计(课题组供图)
版权声明:凡本网注明“来源:中国科学报、科学网、科学新闻杂志”的所有作品,网站转载,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、头条号等新媒体平台,转载请联系授权。邮箱:
[email protected]。