中国科学技术大学郭光灿院士团队的教授李传锋、项国勇与合作者,使用单个量子比特的内存实现的量子模型,可以获得比相同内存维度的任何经典模型更高的精度。该研究展示了量子技术在复杂系统非马尔科夫过程建模中的存储优势。5月6日,相关研究成果在线发表于《自然-通讯》。
实验中进行量子模型模拟的经典时钟过程概念图 中国科大供图
从化学反应到金融市场,从气象系统到星系形成,人们需要处理各种规模的复杂过程。随机建模能够帮助我们预测这些过程的未来行为。然而,由于这些随机过程通常是非马尔可夫的,其未来行为不仅取决于当前状态,也基于它的过去状态。为了模拟这样的过程,必须有一个存储器来存储系统的大量观测信息。信息存储量将直接和预测未来行为的精度关联,因此,这在实践中将导致一个瓶颈,需要在减少内存与预测准确性之间进行权衡。
项国勇研究组发现,即使在对纯经典动力学过程建模的时候,量子技术也可以展示出显著优势。该团队基于光子系统实验实现了一系列非马尔可夫随机过程的量子模型。该类随机过程具有一个可调参数,用于控制其有效的内存长度,最优经典模型的内存维度随此参数的值而增长。实验证明,量子模型可以仅使用单个量子比特作为内存来模拟该类行为中的任何过程(即任意该参数),并且即使存在实验噪声,此量子模型也比最优的相同内存维度的经典模型能够更准确地做出未来行为的预测。
《自然-通讯》编辑评价该工作:“量子技术在模拟随机过程中拥有存储优势,但是在非马尔可夫过程(该过程的量子优势更强)中的实验验证一直没有实现。本文的作者利用单比特存储实现非马尔可夫过程的建模,通过理论分析和实验验证填补了这一空白。”
研究人员介绍,该工作朝着展示这种量子记忆优势的可扩展性和鲁棒性迈出了关键一步。(来源:中国科学报 王敏)
相关论文信息:https://doi.org/10.1038/s41467-023-37555-0